Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase-shifting masks for microlithography: automated design and mask requirements

Not Accessible

Your library or personal account may give you access

Abstract

The problem of automated design of phase-shifting masks for enhanced-resolution optical lithography is examined. We propose a computationally viable algorithm for the rapid design of phase-shifting masks for arbitrary two-dimensional patterns. Our approach is based on the use of a class of optimal coherent approximations to partially coherent imaging systems described by the Hopkins model. These approximations lead to substantial computational and analytical benefits, and, in addition, the resultant approximation error can be quite small for imaging systems with coherence factor σ ≤ 0.5. These approximate models allow us to reduce the mask-design problem to the classical phase-retrieval problem in optics. A fast iterative algorithm, closely related to the Gerchberg–Saxton algorithm, is then applied to generate (suboptimal) phase-shifting masks. Analytical results related to practical requirements for phase-shifting masks are also presented. These results address questions related to the number of discrete phase levels required for arbitrary patterns and provide some insight into alternative strategies for the use of phase-shifting masks. A number of simulated phase-shifting mask-design examples are provided to illustrate the methods and ideas presented.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Generalized inverse lithography methods for phase-shifting mask design

Xu Ma and Gonzalo R. Arce
Opt. Express 15(23) 15066-15079 (2007)

Mask optimization approaches in optical lithography based on a vector imaging model

Xu Ma, Yanqiu Li, and Lisong Dong
J. Opt. Soc. Am. A 29(7) 1300-1312 (2012)

Required optical characteristics of materials for phase-shifting masks

C. Pierrat and S. Vaidya
Appl. Opt. 34(22) 4923-4928 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved