Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder

Not Accessible

Your library or personal account may give you access

Abstract

I expand the radiation potential of an arbitrary monochromatic electromagnetic wave in the cylindrical coordinate eigenfunctions of the scalar Helmholtz equation. Since the resulting beam shape coefficients are found to be an inverse Fourier transform of the z component of the beam fields, the incident Gaussian beam is parameterized by a Fourier angular spectrum of plane waves. The beam's partial-wave coefficients are then obtained, as well as the scattered fields produced by the interaction of the beam with an infinitely long homogeneous circular cylinder. The fields are evaluated analytically in the far zone by the method of stationary phase, and the physical interpretation of the results are discussed extensively.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (134)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved