Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering of electromagnetic waves from two-dimensional rough surfaces with an impedance approximation

Not Accessible

Your library or personal account may give you access

Abstract

The sparse-matrix–flat-surface iterative approach has been implemented for perfectly conducting surfaces and modified to enhance convergence stability and speed for very rough surfaces. Monte Carlo simulations of backscattering enhancement using a beam decomposition technique are compared with millimeter-wave laboratory experimental data. Strong but finite conductivity for metals or thin skin depth for dielectrics is simulated by an impedance approximation. This gives rise to a nonhypersingular integral equation derived from the magnetic field integral equation. The effect of finite conductivity for a metal at visible wavelengths is shown.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations

Kyung Pak, Leung Tsang, Chi H. Chan, and Joel Johnson
J. Opt. Soc. Am. A 12(11) 2491-2499 (1995)

Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers

Antoine Soubret, Gérard Berginc, and Claude Bourrely
J. Opt. Soc. Am. A 18(11) 2778-2788 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.