Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial-frequency model for hyperacuity

Not Accessible

Your library or personal account may give you access

Abstract

Humans can detect vernier displacements of two abutted lines that are 30 times smaller than the bar spacings that determine their grating acuity. Since vernier acuity tasks, and hyperacuity tasks in general, reveal such drastically improved sensitivity, it has been traditionally assumed that the detection mechanisms responsible for hyperacuity are fundamentally different from those underlying ordinary spatial acuity. The need for unusual mechanisms is reinforced by the observation that hyperacuity is weakly affected by changes in suprathreshold contrast, whereas ordinary acuity is strongly influenced by contrast. Nevertheless, we argue that many hyperacuity tasks can be understood without resorting to special mechanisms. We have taken a previously developed contrast-detection model, based on spatial-frequency channels, and have applied it directly to a set of hyperacuity experiments. Hyperacuity performance is readily predicted without modification of the model. In addition, the model correctly predicts the insensitivity of hyperacuity to suprathreshold contrast as well as the measured result that moderate low-pass filtering of hyperacuity images does not significantly decrease hyperacuity performance.

© 1985 Optical Society of America

Full Article  |  PDF Article
More Like This
Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation

Stanley A. Klein and Dennis M. Levi
J. Opt. Soc. Am. A 2(7) 1170-1190 (1985)

Capabilities of monkey cortical cells in spatial-resolution tasks

Andrew Parker and Mike Hawken
J. Opt. Soc. Am. A 2(7) 1101-1114 (1985)

Spatial and spatial-frequency primitives in spatial-interval discrimination

M. J. Morgan and R. M. Ward
J. Opt. Soc. Am. A 2(7) 1205-1210 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved