Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation

Not Accessible

Your library or personal account may give you access

Abstract

A rigorous method for transforming an electromagnetic near-field distribution to the far field is presented. We start by deriving a set of self-consistent integral equations that can be used to represent the electromagnetic field rigorously everywhere in homogeneous space apart from the closed interior of a volume encompassing all charges and sinks. The representation is derived by imposing a condition analogous to Sommerfeld’s radiation condition. We then examine the accuracy of our numerical implementation of the formula, also on a parallel computer cluster, by comparing the results with a case when the analytical solution is also available. Finally, an application example is shown for a nonanalytical case.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Implementing the near- to far-field transformation in the finite-difference time-domain method

Peng-Wang Zhai, Yong-Keun Lee, George W. Kattawar, and Ping Yang
Appl. Opt. 43(18) 3738-3746 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved