Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory

Not Accessible

Your library or personal account may give you access

Abstract

The differential theory of diffraction by an arbitrary-shaped body made of arbitrary anisotropic material is developed. The electromagnetic field is expanded on the basis of vector spherical harmonics, and the Maxwell equations in spherical coordinates are reduced to a first-order differential set. When discontinuities of permittivity exist, we apply the fast numerical factorization to find the link between the electric field vector and the vector of electric induction, developed in a truncated basis. The diffraction problem is reduced to a boundary-value problem by using a shooting method combined with the S-matrix propagation algorithm, formulated for the field components instead of the amplitudes.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Mie scattering by an anisotropic object. Part I. Homogeneous sphere

Brian Stout, Michel Nevière, and Evgeny Popov
J. Opt. Soc. Am. A 23(5) 1111-1123 (2006)

Light diffraction by a three-dimensional object: differential theory

Brian Stout, Michel Nevière, and Evgeny Popov
J. Opt. Soc. Am. A 22(11) 2385-2404 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (124)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.