Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Speckle-field propagation in “frozen” turbulence: brightness function approach

Not Accessible

Your library or personal account may give you access

Abstract

Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of “frozen” turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in “frozen” turbulence are estimated using the BF method. It is shown that atmospheric turbulence–induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

Mikhail A. Vorontsov and Valeriy Kolosov
J. Opt. Soc. Am. A 22(1) 126-141 (2005)

Adaptive laser beam projection on an extended target: phase- and field-conjugate precompensation

Mikhail A. Vorontsov, Valeriy V. Kolosov, and Anton Kohnle
J. Opt. Soc. Am. A 24(7) 1975-1993 (2007)

Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation

Mikhail A. Vorontsov, Valeriy V. Kolosov, and Ernst Polnau
Appl. Opt. 48(1) A13-A29 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved