Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical analysis of a path-length-resolved spectrum of time-varying scattered light field

Not Accessible

Your library or personal account may give you access

Abstract

The path-length-resolved power spectrum of a time-varying scattered light field measured by a time-of-flight method or low-coherence interferometry is evaluated by a new numerical simulation algorithm. The path-length-resolved power spectrum is theoretically derived by combining diffusing-wave-spectroscopy theory and radiative-transfer theory. The proposed algorithm, using the Monte Carlo method, is used to determine the scattering configurations and numerically calculate the power spectrum. The path-length distribution, path-length-dependent scattering order distribution, and path-length-resolved power spectrum are demonstrated numerically over all scattering orders. The resultant power spectra agree with experimental results measured by the low-coherence-dynamic-light-scattering method.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering

Adam Wax, Changhuei Yang, Ramachandra R. Dasari, and Michael S. Feld
Appl. Opt. 40(24) 4222-4227 (2001)

Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry

Anna L. Petoukhova, Wiendelt Steenbergen, and Frits F. M. de Mul
Opt. Lett. 26(19) 1492-1494 (2001)

Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen
Opt. Express 15(15) 9157-9165 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved