Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences

Not Accessible

Your library or personal account may give you access

Abstract

We present a superalgebraically convergent integral equation algorithm for evaluation of TE and TM electromagnetic scattering by smooth perfectly conducting periodic surfaces z=f(x). For grating-diffraction problems in the resonance regime (heights and periods up to a few wavelengths) the proposed algorithm produces solutions with full double-precision accuracy in single-processor computing times of the order of a few seconds. The algorithm can also produce, in reasonable computing times, highly accurate solutions for very challenging problems, such as (a) a problem of diffraction by a grating for which the peak-to-trough distance equals 40 times its period that, in turn, equals 20 times the wavelength; and (b) a high-frequency problem with very small incidence, up to 0.01° from glancing. The algorithm is based on the concurrent use of Floquet and Chebyshev expansions together with certain integration weights that are computed accurately by means of an asymptotic expansion as the number of integration points tends to infinity.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
High-order integral equation methods for problems of scattering by bumps and cavities on half-planes

Carlos Pérez-Arancibia and Oscar P. Bruno
J. Opt. Soc. Am. A 31(8) 1738-1746 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (9)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.