Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generalization of ray tracing in a linear inhomogeneous anisotropic medium: a coordinate-free approach

Not Accessible

Your library or personal account may give you access

Abstract

The Hamiltonian of an optical medium is important in both the design and the description of optical devices in the geometrical optics limit. The results calculated in this article show in detail how ray tracing in anisotropic materials in arbitrary coordinate systems and curved spaces can be carried out. Writing Maxwell’s equations in the most general form, we derive a coordinate-free form for the eikonal equation and hence the Hamiltonian of a general purpose medium. The expression works for both orthogonal and non-orthogonal coordinate systems, and we show how it can be simplified for biaxial and uniaxial media in orthogonal coordinate systems. In order to show the utility of the equations in a real case, we study both the isotropic and the uniaxially transmuted birefringent Eaton lens and derive the ray trajectories in spherical coordinates for each case.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media

Maarten Sluijter, Dick K. G. de Boer, and Joseph J. M. Braat
J. Opt. Soc. Am. A 25(6) 1260-1273 (2008)

Ray-optics analysis of inhomogeneous biaxially anisotropic media

Maarten Sluijter, Dick K. de Boer, and H. Paul Urbach
J. Opt. Soc. Am. A 26(2) 317-329 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved