Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm

Not Accessible

Your library or personal account may give you access

Abstract

Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao–Wilton–Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro
Opt. Lett. 37(3) 416-418 (2012)

Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects

Yan Shi, Hao Gang Wang, Long Li, and Chi Hou Chan
J. Opt. Soc. Am. A 25(10) 2535-2548 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved