Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices

Not Accessible

Your library or personal account may give you access

Abstract

Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization’s widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retardance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Interpretation of Mueller matrices based on polar decomposition

Shih-Yau Lu and Russell A. Chipman
J. Opt. Soc. Am. A 13(5) 1106-1113 (1996)

Analysis of depolarizing Mueller matrices through a symmetric decomposition

Razvigor Ossikovski
J. Opt. Soc. Am. A 26(5) 1109-1118 (2009)

Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers

Matthew Hayman, Scott Spuler, Bruce Morley, and Joseph VanAndel
Opt. Express 20(28) 29553-29567 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved