Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase-retrieval stagnation problems and solutions

Not Accessible

Your library or personal account may give you access

Abstract

The iterative Fourier-transform algorithm has been demonstrated to be a practical method for reconstructing an object from the modulus of its Fourier transform (i.e., solving the problem of recovering phase from a single intensity measurement). In some circumstances the algorithm may stagnate. New methods are described that allow the algorithm to overcome three different modes of stagnation: those characterized by (1) twin images, (2) stripes, and (3) truncation of the image by the support constraint. Curious properties of Fourier transforms of images are also described: the zero reversal for the striped images and the relationship between the zero lines of the real and imaginary parts of the Fourier transform. A detailed description of the reconstruction method is given to aid those employing the iterative transform algorithm.

© 1986 Optical Society of America

Full Article  |  PDF Article
More Like This
Use of Fourier domain real-plane zeros to overcome a phase retrieval stagnation

C. C. Wackerman and A. E. Yagle
J. Opt. Soc. Am. A 8(12) 1898-1904 (1991)

Numerical investigation of the iterative phase-retrieval stagnation problem: territories of convergence objects and holes in their boundaries

Hiroaki Takajo, Tohru Takahashi, Hiroaki Kawanami, and Ryuzo Ueda
J. Opt. Soc. Am. A 14(12) 3175-3187 (1997)

Numerical investigation of the uniqueness of phase retrieval

J. H. Seldin and J. R. Fienup
J. Opt. Soc. Am. A 7(3) 412-427 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved