Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimum phase shift for quantitative phase microscopy in volume measurement

Not Accessible

Your library or personal account may give you access

Abstract

Volume measurement of a phase object is one of the most distinctive capabilities of quantitative phase microscopy (QPM). However, the accuracy of a measured volume is limited by the different noises of a measurement system and the finite bandpass filter used in the phase extraction algorithm. In this paper, we analyze the inherent errors in volume measurement with QPM and propose the optimum condition that can minimize these errors. We find that phase information of a sample in the frequency domain nonlinearly oscillates as a function of the phase shift corresponding to the sample and its medium, and that the phase information of a sample inside the bandpass filter can be maximized by a proper phase shift. Through numerical simulations and actual experiments, we demonstrate that the error in phase volume measurement can be effectively reduced by the enhancement of the phase signal inside the bandpass region using an optimum amount of phase, which can be controlled by changing either the medium index or the wavelength of illumination.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy

Seungrag Lee, Ji Yong Lee, Wenzhong Yang, and Dug Young Kim
Opt. Express 17(8) 6476-6486 (2009)

Quantitative confocal spiral phase contrast

Marc Guillon and Marcel A. Lauterbach
J. Opt. Soc. Am. A 31(6) 1215-1225 (2014)

Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination

Pierre Bon, Sherazade Aknoun, Serge Monneret, and Benoit Wattellier
Opt. Express 22(7) 8654-8671 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.