Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Average capacity analysis of underwater optical wireless communication links over anisotropic strong oceanic turbulence channels

Not Accessible

Your library or personal account may give you access

Abstract

The effect of anisotropy on the channel capacity of underwater optical wireless communication (OWC) links operating in strong oceanic turbulence is investigated. We consider a Gaussian beam wave propagating through a turbulent oceanic fading channel whose statistical distribution is modelled by a gamma–gamma function. To numerically calculate the channel capacity of the OWC system, related entities of the propagating beam such as coherence length, received signal intensity, and the scintillation index are formulated. Further, in this way, the received signal-to-noise ratio and fading distribution of the channel are obtained. The channel capacity examinations analyzed in this paper depend on the oceanic turbulence parameters, especially for the anisotropic factor of oceanic turbulence, and also depend on the other system parameters such as wavelength, link distance, noise variance, and the quantum efficiency of the photodetector.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
SNR advantage of anisotropy in oceanic optical wireless communications links

Yahya Baykal
J. Opt. Soc. Am. A 36(12) 1991-1996 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.