Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical approach for hydrodynamic behavior in the kerf with a quasi-complete model of the laser cutting process

Not Accessible

Your library or personal account may give you access

Abstract

The fundamental physical phenomena occurring during the process of laser cutting are still only slightly understood, and thus the need to develop mathematical and numerical models to optimize the process parameters has become unavoidable for obtaining products with superior quality and for better use. It is in this context that we propose a new approach by building a model to study the laser cutting process, by including several physical mechanisms which interact during the cutting process, such as the laser–metal interaction (wavelength effect, energy absorption, …), the phase change (solidification/fusion), the heat transfers, the fluid flows with influence of the free surface, the turbulent gas jets, and the kerf formation. In view of the complexity of the phenomena put into action, the fundamental mechanisms related to the cutting process are very difficult to understand and then to model. It is indeed necessary to take into account all of the aforementioned interactions, avoiding excessive simplifications and simulation loss of accuracy. The models found in the literature are often simplified and focus on effects such as assisting gas contribution used to evacuate the molten metal film, considered as forces applied to the gas–material interface, which is likely to neutralize given interactions. In these conditions, after highlighting most of the interactions that are involved, we provide a generalized model which accounts for laser absorption, phase transition, heat transfer, fluid flow, kerf formation, and assisting gas jet flow. In other works, each of these contributions has been considered separately, while in this paper, we make an attempt to combine all of them within a single general model that is likely to account for the physical reality of the laser cutting process.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Integration for coaxial irradiation of fiber laser, oxygen jet, and oxy-fuel gas

Hanjin Jo, Sion Kim, Geonhui Lee, Sungyoon Lee, Duckbong Seo, Hong Jin Kong, Kyung Hee Hong, and Tae Jun Yu
Opt. Continuum 3(1) 51-58 (2024)

Modelling of fibre laser cutting via deep learning

Alexander F. Courtier, Michael McDonnell, Matt Praeger, James A. Grant-Jacob, Christophe Codemard, Paul Harrison, Ben Mills, and Michalis Zervas
Opt. Express 29(22) 36487-36502 (2021)

Enhanced melting flow and vaporization model and its applications in pulsed laser polishing on mold steel

Yao Lu, Zhiqiang Sun, Lijun Yang, Maolu Wang, and Yang Wang
Appl. Opt. 59(32) 10121-10129 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.