Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficiency of a model human image code

Not Accessible

Your library or personal account may give you access

Abstract

Hypothetical schemes for neural representation of visual information can be expressed as explicit image codes. We may test whether a given code is sufficient, in the sense of retaining all the information that the human perceives, and necessary, in the sense of retaining only that information. The latter is a test of efficiency. Here, we explore a code modeled on the simple cells of the primate striate cortex. The Cortex transform maps a digital image into a set of subimages (layers) that are bandpass in spatial frequency and orientation. The layers are sampled so as to minimize the number of samples and still avoid aliasing. Samples are quantized in a manner that exploits the bandpass contrast-masking properties of human vision. The entropy of the samples is computed to provide a lower bound on the code size. Finally, the image is reconstructed from the code. We devise psychophysical methods for comparing the original and reconstructed images to evaluate the sufficiency of the code. When each resolution is coded at the threshold for detection artifacts, the image-codesize is about 1 bit/pixel.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Demodulation, predictive coding, and spatial vision

John G. Daugman and Cathryn J. Downing
J. Opt. Soc. Am. A 12(4) 641-660 (1995)

Model for the extraction of image flow

David J. Heeger
J. Opt. Soc. Am. A 4(8) 1455-1471 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.