Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polynomial expansion of severely aberrated wave fronts

Not Accessible

Your library or personal account may give you access

Abstract

The optimization of an optical system is generally carried out by minimizing the wave-front aberrations, the x and y transverse aberrations, or a combination of both. In the last-named, most general case, the optimization implies the treatment of a large number of functions of quite a different nature. We propose to use, together with the Zernike polynomials that orthogonalize the wave-front aberrations, a new set of wave-front polynomials that orthogonalize the transverse aberrations. These polynomials turn out to be a simple linear combination of Zernike polynomials. The combination of these two sets of wave-front polynomials with proper weighting yields the possibility of optimizing the frequency response of both slightly and severely aberrated systems in a formally identical way. The advantage of the method is that one does not have to leave the domain of the wave-front aberration to characterize an optical system, even when severe aberrations are present. The polynomials that minimize the transverse aberrations yield optimum response at very low frequencies; other linear combinations of Zernike polynomials are shown to maximize the frequency response at relatively high spatial frequencies.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Polynomial expansion of severely aberrated wave fronts: comment

Berge Tatian
J. Opt. Soc. Am. A 4(11) 2178-2178 (1987)

Double Zernike expansion of the optical aberration function from its power series expansion

Joseph J. M. Braat and Augustus J. E. M. Janssen
J. Opt. Soc. Am. A 30(6) 1213-1222 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved