Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Incoherent image formation in the presence of scattering eye media

Not Accessible

Your library or personal account may give you access

Abstract

Incoherent image formation in human eyes that have scattering eye media is investigated as a function of the particle size and the optical density of the scattering medium and for test targets that differ in form and size. For single scattering by large particles (≫ λ), a point-spread function and the associated modulation-transfer function of the scattered light are derived from diffraction theory. It is shown that object structures with low spatial frequencies are also imaged by the scattered light. Following single scattering by small particles and/or multiple scattering, the scattered light forms an approximately uniform background. Consequently, the retinal contrast is reduced regardless of spatial frequency. The image quality is, contrary to what is found in normal image formation, extremely sensitive to the form and size of the test target. It is shown that the optimal readability of white-on-black letters is obtained at intermediate spatial frequencies. For an extended layer of arbitrary optical density and particle size, the influence of multiple scattering is approximated by using Hartel’s scattering theory. It is shown that wavelength has only a small influence on retinal contrast for scattering by particles > λ.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Computational model of the effect of light scattering from cataracts in the human eye

Ismael Kelly-Pérez, Neil C. Bruce, Luis R. Berriel-Valdos, Annette Werner, and José A. Delgado Atencio
J. Opt. Soc. Am. A 30(12) 2585-2594 (2013)

Retinal limits to the detection and resolution of gratings

L. N. Thibos, F. E. Cheney, and D. J. Walsh
J. Opt. Soc. Am. A 4(8) 1524-1529 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.