Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial summation properties of directionally selective mechanisms in human vision

Not Accessible

Your library or personal account may give you access

Abstract

Our goal in this paper was to measure psychophysically the receptive-field size of motion units in human vision. To this aim, length and width spatial summation functions were measured for drifting (8-Hz) sinusoidal gratings of spatial frequencies 0.1, 1.0, and 10.0 cycles per degree (c/deg) with two threshold criteria: direction discrimination and simple detection. For each spatial frequency, contrast sensitivity for detection of the direction of drift increased with increasing stimulus size (length or width), at first rapidly (slope ≥ 1.0) and then more gradually (slope 0.29). For most stimuli, the detection and direction-discrimination contrast thresholds were nearly the same. However, for stimuli severely curtailed in width, significantly more contrast was required for direction discrimination than for detection. These results were predicted with a summation model, which incorporated three-dimensional (space–space–time) linear input filters, and probability summation over space and among different filter types. The fit of the model gave an estimate of both the receptive-field length and width of motion-detector units in human vision. At each spatial frequency, the estimates of receptive-field width and length were similar, indicating that the receptive fields of motion-detector units are as long as they are wide at all spatial scales. Receptive-field size varied from approximately 0.12 cycle at 0.1 c/deg to 0.52 cycle at 10.0 c/deg.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision

Stephen J. Anderson, David C. Burr, and M. Concetta Morrone
J. Opt. Soc. Am. A 8(8) 1340-1351 (1991)

Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling

Martin S. Banks, Allison B. Sekuler, and Stephen J. Anderson
J. Opt. Soc. Am. A 8(11) 1775-1787 (1991)

Spatial summation of peripheral Gabor patches

Velitchko Manahilov, William A. Simpson, and Daphne L. McCulloch
J. Opt. Soc. Am. A 18(2) 273-282 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved