Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Stokes matrix of a one-dimensional perfectly conducting rough surface

Not Accessible

Your library or personal account may give you access

Abstract

We study theoretically the Stokes matrix of a perfectly conducting, one-dimensional rough surface that is illu-by a polarized light beam of finite width whose plane of incidence is perpendicular to the grooves of the minated surface. An exact expression for the scattered field derived from Green’s second integral theorem is used to the angular distribution of the Stokes matrix that has eight nonzero elements, four of which are compute unique. Results are presented for the numerical calculation of each matrix element averaged over an ensemble of surface profiles that are realizations of a stationary, Gaussian stochastic process. All four unique matrix elements are significant, with the diagonal elements displaying enhanced backscattering and the off-diagonal elements having complicated angular dependences including structures in the retroreflection direction. With the use of a single source function evaluated through the iteration of the surface integral equation obtained from the extinction theorem for the p-polarized field, we derive an approximate expression for the Stokes matrix that indicates that multiple scattering plays an important role in the polarized scattering from a perfectly conducting rough surface that displays enhanced backscattering. The numerical calculation of each of the con-to the Stokes matrix, taking into account single-, double-, and triple-scattering processes, enables us tributions to assign the main features of the Stokes matrix to particular multiple-scattering processes. Experimental measurements of the matrix elements are presented for a one-dimensional Gaussian surface fabricated in gold-photoresist. The results are found to be reasonably consistent with the theory, although we suggest that coated differences in one matrix element may be due to the finite conductivity of the experimental surface.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Angular correlation functions of amplitudes scattered from a one-dimensional, perfectly conducting rough surface

T. R. Michel and K. A. O’Donnell
J. Opt. Soc. Am. A 9(8) 1374-1384 (1992)

Measurements of light scattering by a series of conducting surfaces with one-dimensional roughness

M. E. Knotts and K. A. O’Donnell
J. Opt. Soc. Am. A 11(2) 697-710 (1994)

Polarization dependence of scattering from one-dimensional rough surfaces

K. A. O’Donnell and M. E. Knotts
J. Opt. Soc. Am. A 8(7) 1126-1131 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (74)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.